A Spatial Alarm Processing and Algorithms
نویسندگان
چکیده
Spatial alarms are fundamental capability for location based advertisements and location based reminders. One of the most challenging problems in scaling spatial alarm processing is to compute alarm free regions (AFR) such that mobile objects traveling within an AFR can safely hibernate the alarm evaluation process until approaching the nearest alarm of interest. In this paper we argue that maintaining an index of both spatial alarms and empty regions (AFR in the context of spatial alarm processing) is critical for scalable processing of spatial alarms. Unfortunately, conventional spatial indexing methods, such as R-tree family, k-d tree, Quadtree, and Grid, are not well suited to index empty regions. We present Mondrian Tree − a region partitioning tree for indexing both spatial alarms and alarm free regions. We first introduce the Mondrian tree indexing algorithms, including index construction, search, and maintenance. Then we describe a suite of Mondrian tree optimizations to further enhance the performance of spatial alarm processing. Our experimental evaluation shows that the Mondrian tree index outperforms traditional index methods, such as R-tree, Grid, Quadtree, and k-d tree, for spatial alarm processing.
منابع مشابه
Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملA motion-aware safe period-based framework for spatial alarm processing
Spatial alarms are set on a spatial location of interest which the subscribers of the alarm will travel to sometime in the future. Alarm processing requires meeting two demanding objectives: high accuracy, which ensures zero or very low alarm misses, and high scalability, which requires highly efficient and optimal processing of spatial alarms. In this paper, we propose to use safe period optim...
متن کاملMicro-classification of orchards and agricultural croplands by applying object based image analysis and fuzzy algorithms for estimating the area under cultivation
Remote sensing technology is one of the most efficient and innovative technologies for agricultural land use/cover mapping. In this regard, the object-based Image Analysis (OBIA) is known as a new method of satellite image processing which integrates spatial and spectral information for satellite image process. This approach make use of spectral, environmental, physical and geometrical characte...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کامل